Analysis and design of Min-Sum-based decoders running on noisy hardware

Christiane Kameni-Ngassa*, Valentin Savin*, David Declercq#

* CEA-LETI, MINATEC campus, Grenoble, France
ETIS ENSEA, Université de Cergy-Pontoise, France

Utilisation de codes détecteurs et/ou correcteurs d'erreurs pour fiabiliser les traitements numériques au sein de circuits non fiables

Research reported in this presentation was supported by the Seventh Framework Programme of the European Union, under Grant Agreement number 309129 (i-RISC project).
Context & Objective

▪ Context
 ▪ Next-generation electronic circuit design
 ▪ increase in density integration
 ▪ process variations, post CMOS technologies
 ▪ lower power supply (reduction by 20% per technology node)
 ▪ Low energy consumption (sustainability concerns)
 ▪ aggressive voltage scaling

Reliability is among the ITRS Overall Design Technology Top-5 Challenges (2010)

▪ Objective
 ▪ Design fault tolerant solutions for LDPC decoders operating on circuits built out from unreliable (faulty) components
 ▪ Can MP decoders provide reliable error protection when they operate on faulty devices?
Min-Sum decoder on faulty devices

- Noisy components: new source of errors
 - Such errors may propagate through decoding iterations...
 - How does this impact on the error-correction capability of the decoder?
 - how to make sure that such an error propagation is not catastrophic?

- Theoretical analysis of “noisy” Min-Sum
 - Develop “noisy versions” of density-evolution
 - evaluate the theoretical performance loss due to noisy components
 - serve as guidelines for practical fault-tolerant implementations

- Practical fault-tolerant Min-Sum-based decoders
 - Evaluate the impact of faulty components on the performance of practical “finite-length” Min-Sum-based decoders
Min-Sum decoder

Initialization: \(\forall n = 1, ..., N; \forall m \in H(n) \)

\[
\gamma_n = \log(\Pr(x_n = 0 | y_n)/\Pr(x_n = 1 | y_n))
\]

\[
\alpha_{m,n} = \gamma_n
\]

Iterations

- **CNU:** \(\forall m = 1, ..., M; \forall n \in H(m) \)

\[
\beta_{m,n} = \left(\prod_{n' \in H(m) \setminus n} \text{sgn}(\alpha_{m,n'}) \right)_{n' \in H(m) \setminus n} \min_{n' \in H(m) \setminus n} (|\alpha_{m,n'}|)
\]

- **VNU:** \(\forall n = 1, ..., N; \forall m \in H(n) \)

\[
\alpha_{m,n} = \gamma_n + \sum_{m' \in H(n) \setminus m} \beta_{m',n}
\]

- **AP-LLR:** \(\forall n = 1, ..., N \)

\[
\tilde{\gamma}_n = \gamma_n + \sum_{m \in H(n)} \beta_{m,n}
\]
Min-Sum decoder on faulty devices

Initialization: \(\forall n = 1, \ldots, N; \forall m \in H(n) \)

\[\gamma_n = \log(\Pr(x_n = 0 \mid y_n)/\Pr(x_n = 1 \mid y_n)) \]

\[\alpha_{m,n} = \gamma_n \]

Iterations

- **CNU:** \(\forall m = 1, \ldots, M; \forall n \in H(m) \)

\[\beta_{m,n} = \left(\prod_{n' \in H(m) \setminus n} \text{sgn}(\alpha_{m,n'}) \right) \min_{n' \in H(m) \setminus n} (|\alpha_{m,n'}|) \]

- **VNU:** \(\forall n = 1, \ldots, N; \forall m \in H(n) \)

\[\alpha_{m,n} = \gamma_n + \sum_{m' \in H(n) \setminus m} \beta_{m',n} \]

- **AP-LLR:** \(\forall n = 1, \ldots, N \)

\[\tilde{\gamma}_n = \gamma_n + \sum_{m \in H(n)} \beta_{m,n} \]
Error models for faulty arithmetic units

- Probabilistic adder (Q bits)
 - Two parameters: the **depth** D and the **error probability** P_a
 - P_a is the probability that an error occurs on at least one of the D LSBs

<table>
<thead>
<tr>
<th>Correct Output</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Pattern</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Pattern</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Probabilistic comparator
 - P_c is the probability that the output is in error

Two's complement

rand integer in $[1, 2^D-1]$
Part I: Theoretical analysis of “noisy” Min-Sum decoder
Noisy density evolution

- Previous works
 - Varshney-2011
 - concentration and convergence properties were proved for the asymptotic performance of noisy message-passing decoders
 - density evolution equations were derived for the noisy Gallager-A decoder
 - Tabatabaei-2013
 - derived DE for noisy Gallager-B decoder defined over binary and non-binary alphabets
 - deal with very simple error models
 - emulate the noisy implementation of the decoder, by passing each of the exchanged messages through a binary (or non-binary) symmetric channel
Noisy density evolution

- We derived DE for fixed-point Min-Sum decoder
 - integrates above error models for arithmetic units (adder/comparator)

- Exchanged messages are random variables
 - Fixed-point implementation \Rightarrow finite alphabet
 - C the PMF of input LLR values γ_n (depends only on the channel model)
 - $A^{(\ell)}, B^{(\ell)},$ and $\bar{C}^{(\ell)}$ the PMFs of $\alpha_{m,n}, \beta_{m,n},$ and $\tilde{\gamma}_n$ at iteration ℓ

- DE equations (asymptotic performance)
 - Recursive formula (by tracking the update rules of exchanged messages):
 \[
 (A^{(\ell+1)}, B^{(\ell+1)}, \bar{C}^{(\ell+1)}) = f(A^{(\ell)}, B^{(\ell)}, \bar{C}^{(\ell)})
 \]
 - Under the assumption that incoming messages to any VNU and CNU are independent
 - In particular, the graph must be cycle-free
Noisy density evolution

- $P_\ell = \Pr(\tilde{Y}_n < 0)$ is the **error probability** at iteration ℓ
- $P_\infty = \lim_{\ell \to \infty} P_\ell$ – **output error probability** (does not always exist!)

Useful decoder: P_∞ exits and $P_\infty < P_0$

η-threshold: $P_{th}(\eta) = \sup\{P_0 | P_\infty \text{ exists and } P_\infty < \eta\}$

DE equations (asymptotic performance)

- Recursive formula (by tracking the update rules of exchanged messages):

\[
(A^{(\ell+1)}, B^{(\ell+1)}, C^{(\ell+1)}) = f(A^{(\ell)}, B^{(\ell)}, C^{(\ell)})
\]

- Under the assumption that incoming messages to any VNU and CNU are independent
- In particular, the graph must be cycle-free
Useful regions for Min-Sum decoder / BSC

- (3, 6)-regular LDPC codes, fixed-point MS
 - $Q = 5$ bits (number of bits of the adder)
 - $P_c = 0.001$ (error probability of the comparator)

Depth $D = 4$

Depth $D = 5$
Useful regions for Min-Sum decoder / BI-AWGN

\(D = 4, P_c = 0.001 \)

\(D = 4, P_c = 0.01 \)

\(D = 5, P_c = 0.001 \)

\(D = 5, P_c = 0.001 \)
First conclusion...

- Errors caused by noisy components do not necessarily propagate catastrophically through decoding iterations
 - Min-Sum decoder can still provide error protection with a given level of reliability, assuming that decoder’s components are reasonably noisy...

- Some characteristics of the Min-Sum decoder
 - Less sensitive to errors in comparators
 - Less sensitive to errors in the LSBs of the adder
 - Highly sensitive to errors in the sign bit of the adder
Part II:

Practical fault-tolerant Min-Sum-based decoders
Practical implementation of Min-Sum decoder

Initialization: \(\forall n = 1, \ldots, N; \forall m \in H(n) \)
\[
\gamma_n = \log(\Pr(x_n = 0 \mid y_n)/\Pr(x_n = 1 \mid y_n))
\]
\[
\alpha_{m,n} = \gamma_n
\]

Iterations

- **CNU:** \(\forall m = 1, \ldots, M; \forall n \in H(m) \)
\[
\beta_{m,n} = \left(\prod_{n' \in H(m) \setminus n} \text{sgn}(\alpha_{m,n'}) \right) \min_{n' \in H(m) \setminus n} (|\alpha_{m,n'}|)
\]

- **VNU:** \(\forall n = 1, \ldots, N; \forall m \in H(n) \)
\[
\alpha_{m,n} = \gamma_n + \sum_{m' \in H(n) \setminus m} \beta_{m',n}
\]

- **AP-LLR:** \(\forall n = 1, \ldots, N \)
\[
\tilde{\gamma}_n = \gamma_n + \sum_{m \in H(n)} \beta_{m,n}
\]

Remark: **MS(1)** and **MS(2)** are equivalent if exact (noiseless) arithmetic

MS(1) and **MS(2)** are **NOT equivalent** if probabilistic (noisy) arithmetic
Practical implementation of Min-Sum decoder

Iterations

- **CNU**: \(\forall m = 1, \ldots, M; \forall n \in H(m) \)
 \[\beta_{m,n} = \left(\prod_{n' \in H(m) \setminus n} \text{sgn}(\alpha_{m,n'}) \right) \min_{n' \in H(m) \setminus n} (|\alpha_{m,n'}|) \]

- **VNU**: \(\forall n = 1, \ldots, N; \forall m \in H(n) \)
 \[\alpha_{m,n} = \gamma_n + \sum_{m' \in H(n) \setminus m} \beta_{m',n} \]

- **AP-LLR**: \(\forall n = 1, \ldots, N \)
 \[\tilde{\gamma}_n = \gamma_n + \sum_{m \in H(n)} \beta_{m,n} \]

- **VNU**: \(\forall n = 1, \ldots, N; \forall m \in H(n) \)
 \[\alpha_{m,n} = \tilde{\gamma}_n - \beta_{m,n} \]

The computation of \(\alpha_{m,n} \) takes \(d_n - 1 \) additions

(\(d_n \) denotes the degree of variable-node \(n \))

Iterations

- **CNU**: \(\forall m = 1, \ldots, M; \forall n \in H(m) \)
 \[\beta_{m,n} = \left(\prod_{n' \in H(m) \setminus n} \text{sgn}(\alpha_{m,n'}) \right) \min_{n' \in H(m) \setminus n} (|\alpha_{m,n'}|) \]

- **AP-LLR**: \(\forall n = 1, \ldots, N \)
 \[\tilde{\gamma}_n = \gamma_n + \sum_{m \in H(n)} \beta_{m,n} \]

- **VNU**: \(\forall n = 1, \ldots, N; \forall m \in H(n) \)
 \[\alpha_{m,n} = \tilde{\gamma}_n - \beta_{m,n} \]

The computation of \(\alpha_{m,n} \) takes \(d_n + 1 \) additions

\[\Rightarrow \] \(d_n \) additions to compute \(\tilde{\gamma}_n \), and 1 more addition to derive the \(\alpha_{m,n} \) value

\[\Rightarrow \] An increased number of additions results in an increased error probability of \(\alpha_{m,n} \)
Practical implementation of Min-Sum decoder

- Mackay’s regular (3,6)-LDPC code, \([K = 504, N = 1008]\)
- Fixed-point MS decoder: 5 / 6 bits (exchanged messages / AP-LLR)

![Graph showing Frame Error Rate (FER) vs. Signal-to-Noise Ratio (SNR) for different depths and error probabilities.]

- Color code:
 - **Noiseless**
 - Depth = 3
 - Depth = 4
 - Depth = 5
 - Depth = 6

- Dashed curve: “DE-like” (1)
- Comp. err. prob: \(P_c = 0.01\)
- Adder err. prob: \(P_a = 0.01\)
Practical implementation of Min-Sum decoder

- Mackay’s regular (3,6)-LDPC code, \([K = 504, N = 1008]\)
- Fixed-point MS decoder: 5 / 6 bits (exchanged messages / AP-LLR)

Comp.err. prob: \(P_c = 0.01\)
Adder err. prob: \(P_a = 0.01\)

Color code:
- Noiseless
 - Depth = 3
 - Depth = 4
 - Depth = 5
 - Depth = 6

Dashed curve: “DE-like” (1)
Solid curve: Practical (2)
Performance of Min-Sum-based decoder

- Min-Sum-based decoders
 - improved versions of the MS algorithm, with only a very limited (usually negligible) increase in complexity
 - Offset-Min-Sum (OMS)
 - Self-Corrected Min-Sum (SCMS)
 - intrinsic ability to detect and discard unreliable messages during the iterative decoding process.

- Only “practical” implementations are considered
Performance of Min-Sum-based decoder

- Min-Sum-based decoders

- Self-Corrected Min-Sum (SCMS)
 - intrinsic ability to detect and discard unreliable messages during the iterative decoding process.

- a variable-to-check message \(\alpha_{m,n} \) is erased (set to zero) if its sign changed with respect to the previous iteration.

\[
\text{Initialization: } \forall n = 1, \ldots, N; \forall m \in H(n)
\]

\[
\begin{align*}
\gamma_n &= \log(\Pr(x_n = 0 \mid y_n)/\Pr(x_n = 1 \mid y_n)) \\
\alpha_{m,n} &= \gamma_n
\end{align*}
\]

\[
\text{Iterations}
\]

- \textbf{CNU: } \forall m = 1, \ldots, M; \forall n \in H(m)

\[
\beta_{m,n} = \left(\prod_{n' \in H(m) \setminus n} \text{sgn}(\alpha_{m,n'}) \right) \min_{n' \in H(m) \setminus n} (|\alpha_{m,n'}|)
\]

- \textbf{AP-LLR: } \forall n = 1, \ldots, N

\[
\tilde{\gamma}_n = \gamma_n + \sum_{m \in H(n)} \beta_{m,n}
\]

- \textbf{VNU: } \forall n = 1, \ldots, N; \forall m \in H(n)

\[
\alpha_{m,n}^{\text{tmp}} = \tilde{\gamma}_n - \beta_{m,n}
\]

- if \(\text{sgn}(\alpha_{m,n}^{\text{tmp}}) = \text{sgn}(\alpha_{m,n}) \) then \(\alpha_{m,n} = \alpha_{m,n}^{\text{tmp}} \)
- else \(\alpha_{m,n} = 0 \)
Performance of Min-Sum-based decoder

- Mackay’s regular (3,6)-LDPC code, \([K = 504, N = 1008]\)
- Fixed-point decoders: 4 / 5 bits (exchanged messages / AP-LLR)

![Graph showing performance curves for different codes and error rates]

- Comp. err. prob: \(P_c = 0.01\)
- Adder err. prob: \(P_a = 0.01\)
- Depth = 4

Color code:
- SCMS
- MS
- OMS

Dashed curves: noiseless
Solid curves: noisy

Remark: noiseless SCMS achieves \(\approx\) Belief Propagation performance
Performance of Min-Sum-based decoder

- Mackay’s regular (3,6)-LDPC code, \([K = 504, N = 1008]\)
- Fixed-point decoders: 4 / 5 bits (exchanged messages / AP-LLR)

Requested channel \(E_b/N_0\) for target decoded BER = \(10^{-5}\)

\((E_b/N_0 = \infty \text{ means target BER cannot be achieved})\)

- Error prob. of the adder (depth = 4)
- Error prob. of the comparator
Conclusion

- “Adjustable” error-models for noisy Min-Sum-based decoders
- Density evolution analysis of the noisy Min-Sum decoder
 - proved that error protection (with a certain level of reliability) is still possible
 - characterized the sensitivity of the decoder to variations of the parameters of the error model, in terms of useful regions
- Finite-length performance of Min-Sum-based decoders
 - highlighted the limitations of the theoretical analysis with respect to practical implementations
 - evaluate finite-length performance for various parameters of the hardware noise model
 - **SCMS**: intrinsic ability to detect and discard unreliable messages, which proves to be particularly useful for noisy implementations
Merci de votre attention